If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+150t+100=0
a = -16; b = 150; c = +100;
Δ = b2-4ac
Δ = 1502-4·(-16)·100
Δ = 28900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{28900}=170$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(150)-170}{2*-16}=\frac{-320}{-32} =+10 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(150)+170}{2*-16}=\frac{20}{-32} =-5/8 $
| 2h=2(4h-3) | | X^2+2x+43=0 | | 6(3x-5)=7(3x-5) | | 3/4(x-2)=9/5 | | (x-42)/10=-0.4 | | -16t*2+150t+50=0 | | 4(-3+x)=-8 | | -2(7x+1)=128 | | (x+5)(x−1)=16(x+5)(x−1)=16 | | 37x-19-7x=14+30x-33 | | 50=16t^2-150t | | 7b+5=-3b-10 | | 22=2x+16 | | |3-3x/4|=9 | | 2p+4=26 | | 3x=(3)(9)(27) | | 4(6+6x)=72 | | X*8=2x-12 | | -6(-2x+9)=18 | | 4(6+5x)=-204 | | 3x+2(2)=2x+20 | | (10x)+(13x-33)=180 | | 4(-1x+10)=64 | | (2x-4)^2+12=4 | | 5(-2+6x)=320 | | 3x-5=21-10x | | 13+3f=-2 | | 7/9=e/45 | | 4(2d-3)=3(3-2d) | | -22+13x=63 | | 0.75c+7=2,80 | | x/10+3=-8 |